In vivo fluorescence microscopy of neuronal activity in three dimensions by use of voltage-sensitive dyes.

نویسندگان

  • Jonathan A N Fisher
  • Eugene F Civillico
  • Diego Contreras
  • Arjun G Yodh
چکیده

We report in vivo imaging of neuronal electrical activity from superficial layers of the mouse barrel cortex. The measurements have approximately 16-microm spatial and 3-ms temporal resolution and reach depths of 150 microm below the cortical surface. The depth-dependent differential-fluorescence optical sections of activity are consistent with known cortical architecture and represent an important step toward in vivo measurement of functioning complex neural networks. Our observations employ a custom gradient-index lens probe and voltage-sensitive dye fluorescence; the use of epi-illumination rather than dark-field illumination provides the dramatic signal-to-noise improvement necessary for fast three-dimensional imaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near infrared two-photon excitation cross-sections of voltage-sensitive dyes.

Microscopy based on voltage-sensitive dyes has proven effective for revealing spatio-temporal patterns of neuronal activity in vivo and in vitro. Two-photon microscopy using voltage-sensitive dyes offers the possibility of wide-field visualization of membrane potential on sub-cellular length scales, hundreds of microns below the tissue surface. Very little information is available, however, abo...

متن کامل

Analysis of Antimicrobial-Triggered Membrane Depolarization Using Voltage Sensitive Dyes

The bacterial cytoplasmic membrane is a major inhibitory target for antimicrobial compounds. Commonly, although not exclusively, these compounds unfold their antimicrobial activity by disrupting the essential barrier function of the cell membrane. As a consequence, membrane permeability assays are central for mode of action studies analysing membrane-targeting antimicrobial compounds. The most ...

متن کامل

Enzyme-induced staining of biomembranes with voltage-sensitive fluorescent dyes.

We consider the physicochemical basis for enzyme-induced staining of cell membranes by fluorescent voltage-sensitive dyes, a method that may lead to selective labeling of genetically encoded nerve cells in brain for studies of neuronal signal processing. The approach relies on the induction of membrane binding by enzymatic conversion of a water-soluble precursor dye. We synthesized an amphiphil...

متن کامل

A new nonscanning confocal microscopy module for functional voltage-sensitive dye and Ca2+ imaging of neuronal circuit activity.

Recent advances in fluorescent confocal microscopy and voltage-sensitive and Ca(2+) dyes have vastly improved our ability to image neuronal circuits. However, existing confocal systems are not fast enough or too noisy for many live-cell functional imaging studies. Here, we describe and demonstrate the function of a novel, nonscanning confocal microscopy module. The optics, which are designed to...

متن کامل

Use of Voltage - Sensitive Dyes and Optical

-Understanding the spatio-temporal features of the information processing occurring in any complex neural structure requires the monitoring and analysis of the activity in populations of neurons. Electrophysiological and other mapping techniques have provided important insights into the function of neural circuits and neural populations in many systems. However, there remain limitations with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2004